

BRINGING THE POWER OF THE SUN TO EARTH

PROSPECTS FOR A NEW NUCLEAR ERA

Alfredo Portone Fusion For Energy, Barcelona

> Special thanks: Sylvie Leray, CEA (F) Raul Pampin, F4E (E) Marco Ripani, INFN (I)

CHICAGO, DECEMBER 2ND 1942, 3:25 PM "The Italian navigator has just landed in the new world"

(Call by Arthur Compton to James Conant in Washington)

ALAMOGORDO, JULY 16TH 1945, 5:29 AM

"Now I am become death, the destroyer of worlds"

(Robert Oppenheimer after witnessing the Trinity test quoting Bhagavadgita)

OUTLINE

- 1. Nuclear reactors basics
- 2. Fuel cycle and radioactive waste
- 3. Reactors generations and types
- 4. Nuclear energy production in the world
- 5. Economics
- 6. Safety
- 7. Conclusions

NUCLEAR FISSION (HAHN-STRASSMANN, MEITNER-FRISCH, DECEMBER 1938)

NUCLEAR BINDING ENERGY

CHEMICAL VS NUCLEAR ENERGY DENSITY

Fuel energy content

◦ Coal (C): C + O_2 → C O_2 + 4 eV

 $1g \text{ coal} = 4x1.6x10^{-19}x6.02x10^{23}/12 = 3.2x10^4 \text{ J}$

1 eV = 1.6x10⁻¹⁹ J 1 mole = 6.02x10²³ atoms

Natural Gas (CH₄): CH₄ + O₂ → CO₂ + 2H₂O + 8 eV
 1g gaz = 8x1.6x10⁻¹⁹x6.02x10²³/16 = 4.8x10⁴ J

○ Nuclear fission (U): ${}^{235}U + n \rightarrow {}^{93}Rb + {}^{141}Cs + 2n + 200 \text{ MeV}$ 1g ${}^{235}U = 2x10^8x1.6x10^{-19}x6.02x10^{23}/235 = 8.2x10^{10} \text{ J}$

○ Nuclear fusion: ${}^{2}H + {}^{3}H \rightarrow {}^{4}He + n + 17.5$ MeV (80% carried by n) 1g D-T = $1.75 \times 10^{7} \times 1.6 \times 10^{-19} \times 6.02 \times 10^{23}/5 = 3.4 \times 10^{11}$ J

CHEMICAL VS NUCLEAR ENERGY DENSITY

Primary energy consumption of Italy for 1 day

FUEL CONSUMPTION & ELECTRICAL POWER GENERATION

► Fuel Consumption, 1000 MWe Power Plant (=10⁶ homes) per day

• Coal (40% efficiency)

 $10^9 \times 8.64 \times 10^4 / 0.4 \times 3.2 \times 10^4 \approx 6750 \text{ ton/day}$

- Natural Gas (50% efficiency) : density 0.657 kg·m⁻³ (gas, 25 °C, 1 atm)
 10⁹x8.64x10⁴ / 0.5x4.8x10⁴ ≈ 3600 t/day (/657 = 5.50x10⁶ m³/day)
- Natural uranium (²³⁵U = 0.7%, 33% efficiency): 10⁹x8,64x10⁴ / 0.33x0.7x10⁻²x8.2x10¹⁰ ≈ 460 kg/day
- D-T in nuclear fusion (assuming 10% efficiency): 10⁹x8,64x10⁴ / 0.1x3.4x10¹¹ ≈ 250 kg/day

NUCLEAR FISSION VS TRANSMUTATION

- For other materials (e.g. steel), RNC can lead to the formation of radioactive nuclei → this process is called activation
- γ radiation can also occur due to neutron scattering
- Activation can also occur due e.g. due to (n, 2n) reactions

Example: Plutonium production from Uranium

 $n+^{238}U \rightarrow ^{239}U + \gamma \rightarrow ^{239}Np + \beta + anti-\nu \rightarrow ^{239}Pu + \beta + anti-\nu$

Example: 60Co production in steel

 $n + {}^{59}Co \rightarrow {}^{60}Co + \gamma \rightarrow {}^{60}Ni + \beta + anti-\nu$

Fissile, fissionable, fertile isotopes

- Heavy nuclei with a high fission cross section at low (thermal) neutron energies are called **fissile** (e.g. ²³³U, ²³⁵U, ²³⁹Pu,...)

- Those with a non-zero fission cross section only at higher neutron energies are called fissionable (e.g. $^{\rm 238}{\rm U},...)$

- Those that can produce a fissile isotope via neutron radiative capture and β decay are called **fertile**, i.e. they can be used to **produce fuel** (e.g. ²³⁸U,...)

- ✓ Natural Uranium → 0.7 % ²³⁵U + 99.3 % ²³⁸U → most reactors need 3-5 % ²³⁵U → "enrichment" process
- ✓ Plutonium production is also called "breeding"
- ✓ Under certain conditions, a reactor can produce more Pu than it consumes → it is called "breeder"

NEUTRON 'THERMALIZATION'

Fission spectrum, fast and slow neutrons

It is customary to adopt the following classification:

```
- slow neutrons: those with kinetic energy T_n < 1 \text{ eV}
```

- in particular **thermal neutrons** have T_n around 0.025 eV or 25 meV (the value of kT, where k is the Boltzmann constant and T is the temperature

- fast neutrons: $0.1 \text{ MeV} < T_n < 20 \text{ MeV}$

Slowing down neutrons (moderation)

It is easy to show in non-relativistic kinematics that **after a scattering off a nucleus with mass number A**, the kinetic energy of the neutron changes according to the ratio

$$\frac{T'_n}{T_n} = \frac{m_n^2 + m_A^2 + 2m_n m_A \cos\theta_{CM}}{(m_n + m_A)^2}$$

Assuming an isotropic CM cross section that does not depend on $\cos\theta_{CM}$, the corresponding term averages out to zero, so that we can write <u>on average</u>

$$\frac{T'_n}{T_n} = \frac{m_n^2 + m_A^2}{(m_n + m_A)^2} \quad \Rightarrow \text{Assuming } \mathsf{M}_{\mathsf{A}} \cong \mathsf{Am}_{\mathsf{n}} \Rightarrow \qquad \frac{T'_n}{T_n} = \frac{1 + A^2}{(1 + A)^2}$$

For a **heavy nucleus A>>1** \rightarrow $T_n' \cong T_n$ or in other words, the neutron has to undergo many collisions in order to significantly lose energy.

Consider instead the case $A=1 \rightarrow$ (target containing hydrogen, i.e. protons as nuclei) $T_n' = T_n/2$ i.e. on average a neutron will lose half of its energy at each collision and therefore few collisions are sufficient to rapidly decrease its energy

→ Moderators = light materials containing hydrogen = water, paraffin or graphite

THERMAL REACTOR

FAST REACTOR

Physics of multiplication: visual representation

FISSION REACTOR WORKING PRINCIPLES

FISSION REACTOR WORKING PRINCIPLES

Basic components of a thermal nuclear power reactor (pressurised water reactor):

1-Reactor: fuel rods (light blue) heats up pressurised water. Control rods (grey) absorb neutrons to control or halt the fission process2-Coolant and moderator: fuel and control rods are surrounded by water (primary circuit) that serves as coolant and moderator3-Steam generator: water heated by the nuclear reactor transfers thermal energy through thousands of pipes to a secondary circuit of water to create high-pressure steam

4-Turbo-generator set: steam drives the turbine, which spins the generator to produce electricity just like in a fossil-fuel plant 5-Condenser: removes heat to convert steam back to water, which is pumped back to the steam generator

6-Cooling tower: removes heat from the cooling water that circulates through the condenser, before returning it to the source at near-ambient temperature

Source: OECD-NEA Nuclear Energy Today, 2nd edn. (2012), ISBN 978-92-64-99204-7. NEA Report No. 6885

REACTOR TYPES IN USE WORLDWIDE (END OF 2016)

REACTOR TYPES

NON-RADIOACTIVE ENVIRONMENTAL IMPACT

- Indicators selected to describe the non-radioactive impacts.
- Comparison of the selected indicators between the French Twice-Through Cycle and other energy sources. The error bars represent the gap between the minimum and maximum values found in the literature.

- Ch. Poinssot et al. / Energy 69 (2014)
- green-house-gases emissions (GHG, gCO₂eq/kWhe),
- atmospheric pollution (mg/kWhe)
 - SOx
 - NOx
- water pollution (mg/kWhe),
 - Acidification
 - Eutrophisation
 - POCP (photochemical ozone creation potential)
- land-use (m²/GWhe)
- water consumption (I/MWhe)
- water withdrawal (I/MWhe)
- production of technological waste (g/MWhe)

The nuclear fuel cycle

Nuclear fuel element

Fuel pellets. Photo: Areva/US NRC

Long lifetime radioactive waste production (1 GW_e LWR)

LLFP=Long Life Fission Products

Transuranics = Minor Actinides + Pu

The thorium cycle

	Cm 238 2,4 h	Cm 239 3 h	Cm 240 27 d sf	Cm 241 32,8 d * 5,939 7,472,431;192	Cm 242 162,94 d st a 6.113:6009 st o v(44); a	Cm 243 29,1 a 51 a 5,765 5,742 c st; p 275: 228;	Cm 244 18,10 a sf * 5405; 5,762	Cm 245 8500 a sf	Cm 246 4730 a a 5,386; 5,343 sf; g
Am 236 ? 3,7 m	⁶ x 6.52 Am 237 73,0 m sf ⁶ 0.042 2003 438; 474: 2003 438; 474:	γ 188 9 Am 238 1,63 h sf ⁴ ⁴ ,534 γ 903,919,501: 9	st 9 Am 239 11,9 h st ⁴ 5.774 9 276: 226	Am 240 50,8 h	$\begin{array}{c} \sigma^{-20} \\ \sigma_{\gamma}^{-5} \end{array}$	210	y(4)	x175; 133. x 350; w; 2100 Am 244 51 p ⁻¹ .5 p ^{-0.4} x 100; 100; x 100; 100; x 100; 100; x 10	γ (45); e ⁻ σ 1,2; σ 0,16 Am 245 2,05 h sf μ ^{-0.9} γ283; γ283;
α 6,41 Pu 235 25,3 m \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	Pu 236 2,858 a 5,786; 5,721 st. Mg 20 y (49:109); 6"	Pu 237 45,2 d	9 Pu 238 87,74 a #5,499; 5,466 #5,5499; 5,466 #5,5499; 5,466	9 Pu 239 2,411 · 10 ⁴ a st 5157; 5,144 st; y (52) e; m e; m	Pu 240 6563 a st a 5,188;5,124 st y (45) e7:s	Pu 241 14,35 a st processing * 4,891 1148er 1148er	n 0.074 Pu 242 3,750 · 10 ⁵ a a 4,901; 4,856 8(; y145) e ⁻ ; g e ⁻ ; g e ⁻ ; g	Pu 243 4,956 h sf ^{g=0.6} y84s	Pu 244 8,00 - 107 a st e4,588,4,546 st; e1,7
Np 234 4,4 d «; β+ γ 1559; 1528; 1602 στ 900	Np 235 396,1 d c; a 5,025; 5,007 y 26; 84); e g; o 160 + ?	Np 236 22,5 h 154 10 ⁵ (4 57 0.5 4 57 (n 1)6 ¹⁰ 2 690 1 4 10 ⁵ (n 2)6 ¹⁰ (n 2700 4 n 2700	Np 237 2,144 - 10 ⁶ a = 4,790; 4/74 - 100:	Np 238 2,117 d β ⁻ 1,2 γ 984; 1029; 1026; 924; e ⁻ g; σ ₇ 2100	Np 239 2,355 d β 0,4; 0,7 γ 106; 278; 228; φ ; g σ 32 + 19; σ; <1	Np 240 7,22 m 65 m γ 565; γ 565; 597 σ ⁻ 601; 1σ 448σ	Np 241 13,9 m β ⁻ 1,3 γ 175; (133)	Np 242 2,2 m 5,5 m 8 ^{-2,7} 9 ⁻ 7,736: 9 ⁺⁵ 1473 158 9	Np 243 1,85 m β ⁻ γ 288 9
U 233 1,592 · 105 æ « 4,824; 44 · Ne 25; γ (42; 97); e « 47: « 530	U 234 0,0055 2,105 - 10 47754 2 .: 2 M28: W 1 8: 1217 7 : 398: 14 : 105	U 235 0,7200 7,82 0 4,58 10 10 10 10 10 10 10 10 10 10 10 10 10 1	U 236 120 ns 2,342:10°a 4,445 1, 162 4,445 1, 162 1, 1-) 1, -) 1, -] 1,	U 237 6.75 d 7.60; 208 e ⁻ o ~ 100; ot < 0,35	U 238 99,2745 2016 4,458-10°a +254 123 220 rs 4,458-10°a +254 -10°a *156-14 *156-14	U 239 23,5 m β ⁻ 1.2; 1.3 γ 75; 44 σ 22; σ; 15	U 240 14,1 h β ^{- 0,4} γ 44: (190) e ⁻ m		U 242 16,8 m 7 68; 58: 585; 573 m
Pa 232 1,31 d β 0,3, 1,3ε γ 969; 894; 150; 8 α 460; σ; 700	2 2 33 2 0 d β ⁻ 0, 0, 0, 1 341, 0 ⁻ α20 19; 1<0	Pa 234 1,17 m 6,70 h π (52.3 η (1001) π (0.5 12 γ (31: 601) h (74), σ [*] η < 500 π < 500	Pa 2, 5 24,2 1 n ^{β⁻1,4} ^{γ 128} 65	Pa 236 9,1 m β ⁼ 2.0; 3.1 γ 642; 687; 1763; g βsf ?	Pa 237 8,7 m β ⁻ 1,4; 2,3 γ 854; 865; 529; 541	Pa 238 2,3 m β ⁻ 1.7; 2.9 γ 1015; 635; 448; 680 9	148		150
Th 231 25,5 h ^{β⁻ 0,3: 0,4} ^{γ 26: 84} e ⁻	Th 232 100 1,405 Th a a 4, 13:3% 3; sf 78; sf 77 17: ar 0,1 000s	Th 233 22,3 m ^{β 12} , 137,39; 4596° α1500; σ ₁ 15	Tr 234 24,10 j γ63,92;96 σ13, σ < 001	Th 235 7,1 m ^{β⁻1,4} γ 417; 727; 696	Th 236 37,5 m ^{β⁻1,0,} γ 111; (647; 196)	Th 237 5,0 m			

LLFP LLFP

SPENT FUEL COMPOSITION AND RADIO-TOXICITY

Spent fuel composition

Distribution (in kg per tonne of fuel) and mass produced by the principal radioactive elements present in fuel unloaded from an irradiated pressurised water reactor core. @IPHC/IN2P3 (Source: Isabelle Billard) Radiotoxicity (Sievert Sv):

Activity (how much radioactivity from the material, measured e.g. in Becquerel=decays/sec) x Dose per Bq (equivalent dose per activity, measures the biological damage, measure in Sievert)

1 Sievert = 1 Joule/Kg (after correction depending on radiation type)

Change in radiotoxicity over the period 10 years to 1 million years The pattern of change in the radiotoxicity of spent fuel highlights the predominance of plutonium. This element overtakes fission products around 50 years after removal from the reactor. @Source: CEA

OPEN (OTC) VS CLOSED (TTC) FUEL CYCLE

Two options:

- Open cycle: direct disposal of spent fuel (US, Sweden, Finland...)
- Partially closed cycle: reprocessing to extract Pu and make MOX fuels (France, Japan, Russia, China...)

- Reprocessing reduces the amount, volume and radiotoxicity of the highlevel waste to be stored, but generates additional volumes of intermediate wastes during the reprocessing and fuel fabrication processes
- In any case a final deep geologic disposal of remaining long-lived high level wastes will be necessary

Pu recovery and MOX fabrication

Comparison between Twice-Through (TTC) and Once-Through Cycle (OTC)

NUCLEAR WASTE TRANSMUTATION/INCINERATION

NUCLEAR WASTE TRANSMUTATION/INCINERATION

Moreover, since in the new reactors the fuel may include non-separated actinides, the *proliferation* issue (use of Pu to make weapons) would be mitigated

Radiotoxicity= Activity (how much radioactivity from the material, measured e.g. in Becquerel=decays/sec) x Dose per Bq (equivalent dose per activity, measures the biological damage, measure in Sievert)

1 Sievert = 1 Joule/Kg (after correction depending on radiation type)

NUCLEAR WASTE TRANSMUTATION/INCINERATION

► Two options:

- Small amount of minor actinides in many (fast) reactors
- Large amount of minor actinides in dedicated systems

Radiotoxicity of UOX spent fuel relative to uranium ore, versus time (years)

H.A. Abderrahim et al., NEA/NSC/R (2015) 2

FAST SPECTRUM SYSTEMS

Apart for ²⁴⁵Cm, minor actinides are characterized by a Fission x-section in Neutron energy fission threshold around the MeV. Minor actinides (7U)/U spectrum In fast 2.5Reactors (Gen IV ADS) 10-13 240_{PU} 241 In order to transmute actinides, need fast neutrons \rightarrow 239, **minimal moderation** in intermediate medium \rightarrow flux dn/dlog(E) (cooling) medium must be **gas**, **sodium**, **lead**, etc. Cross ²³⁷Np `243_{Am} → Such isotopes can be burnt in fast reactors or in fast Differential neutron Fission Accelerator Driven Systems (ADS) (neutron spectrum from 10 keV to 10 MeV) 0.5 MeV 1x10 1x10⁵ 1×10^{6} 1×10^{7} Neutron energy, eV

Delayed neutron fraction from FF, e.g.: ^{235}U = 0.65 % ^{241}Am = 0.113 %

In **ADS delayed neutrons** emitted by FF are **less important** for the reactor control: **fast ADS** can therefore be fueled with almost any Transuranic element and burn them

Fast ADS → good candidates as transmuters of high activity and long lifetime (thousands of years) Generation III reactor waste into much shorter lifetime fragments (few hundred years), to be stored in temporary surface storage. But further R&D is still needed

FAST REACTOR FUEL CYCLE: AN EXAMPLE

Theoretical equilibrium fuel cycle for 1500 MW_{th} LFR (ELSY-type)

Considering 0.5% losses in the reprocessing:

- in the waste there are also: 25 kg/y U, 6 kg/y Pu , 0.3 kg/ MA;
- fed U must be 580 kg/y

<u>ACCELERATOR DRIVEN SYSTEMS (ADS)</u>

NUCLEAR WASTE TYPES

High-level waste (HLW) :

- Used fuel or separated waste from reprocessing of used fuel.
- Decay heat (>2kW/m³) leading to temperature increase
- 3% of the volume, but 95% of the total radioactivity of produced waste
- Have long-lived and short-lived components

Intermediate-level waste (ILW) :

- comprises resins, chemical sludges, and metal fuel cladding, as well as contaminated materials from reactor decommissioning
- Highly radioactive but decay heat < 2kW/m³
- 7% of the volume, 4% of total radioactivity

Low-level waste (LLW) :

- radioactive content not exceeding 4 GBq/t of alpha activity or 12 GBq/t beta-gamma activity
- comprises paper, rags, tools, clothing, filters, etc., which contain small amounts of mostly short-lived radioactivity
- 90% of the volume, 1% of total radioactivity
- Very low-level waste (VLLW) :
 - radioactive materials at a level not considered harmful to people or the surrounding environment
 - demolished material (concrete, plaster, bricks, metal, valves, piping, etc. produced during rehabilitation or dismantling operations

Hulls from the zirconium alloy clodding that covers fuel pellets

Photos from ANDRA Synthesis report 2021

IAEA SCHEME FOR CLASSIFICATION OF RADIOACTIVE WASTE (2009)

- 1. <u>Exempt waste</u> (EW) such a low radioactivity content, which no longer requires controlling
- <u>Very short-lived waste</u> (VSLW) can be stored for a limited period of up to a few years to allow its radioactivity content to reduce by radioactive decay. It includes waste containing radio-nuclides with very short half-lives often used for research and medical purposes
- **3.** <u>Very low level waste(VLLW)</u> usually has a higher radioactivity content than EW but may, nonetheless, not need a high level of containment and isolation. Typical waste in this class includes soil and rubble with low levels of radioactivity which originate from sites formerly contaminated by radioactivity
- 4. Low level waste (LLW) it has a high radioactivity content but contains limited amounts of long-lived radio-nuclides. It requires robust isolation and containment for periods of up to a few hundred years and is suitable for disposal in engineered near-surface facilities. It covers a very broad range of waste and may include short-lived radionuclides at higher levels of activity concentration, and also long-lived radionuclides, but only at relatively low levels of activity concentration
- 5. Intermediate level waste (ILW) because of its radioactivity content, particularly of long-lived radionuclides, it requires a greater degree of containment and isolation than that provided by near surface disposal. It requires disposal at greater depths, of the order of tens of metres to a few hundred metres
- 6. <u>High level waste</u> (HLW) this is waste with levels of activity concentration high enough to generate significant quantities of heat by the radioactive decay process or waste with large amounts of long-lived radionuclides that need to be considered in the design of a disposal facility for such waste. *Disposal in deep, stable geological formations usually several hundred metres or more below the surface is the generally recognized option for disposal*

NOTE: Often surface & deep repository are designed together and comprise additional infrastructures (High-Tech Campus)

NUCLEAR WASTE MANAGEMENT

https://www.andra.fr/panorama-mondial-ou-en-sont-les-autres-pays

NUCLEAR REACTORS GENERATIONS

- Presently, going from Generation II to Generation III
- Preparing for Generation IV

Source: Generation IV International Forum, www.gen-4.org

Generation IV: the future of nuclear power from fission

Six conceptual nuclear energy systems selected by Gen. IV International Forum (GIF) <u>https://www.gen-4.org/gif/</u>

	neutron spectrum (fast/ thermal)	coolant	temperature (°C)	pressure	fuel	fuel cycle	size(s) (MWe)	uses
Gas-cooled fast reactors	fast	helium	850	high	U-238 +	closed, on site	1200	electricity & hydrogen
Lead-cooled fast reactors	fast	lead or Pb-Bi	480-570	low	<i>U-238</i> +	closed, regional	20-180 300-1200 600-1000	electricity & hydrogen
Molten salt fast reactors	fast	fluoride salts	700-800	low	UF in salt	closed	1000	electricity & hydrogen
Molten salt reactor - Advanced High- temperature reactors	thermal	fluoride salts	750-1000		UO ₂ particles in prism	open	1000-1500	hydrogen
Sodium-cooled fast reactors	fast	sodium	500-550	low	U-238 & MOX	closed	50-150 600-1500	electricity
Supercritical water-cooled reactors	thermal or fast	water	510-625	very high	UO ₂	open (thermal) closed (fast)	300-700 1000-1500	electricity
Very high temperature gas reactors	thermal	helium	900-1000	high	UO ₂ prism or pebbles	open	250-300	hydrogen & electricity

Generation IV: the future of nuclear power from fission

 Sustainable energy generation
 Long-term availability
 Minimization and management of their nuclear waste • Economical competitiveness • High level of safety and reliability • Proliferation-resistance

Supercritical Water Cooled Reactor

Molten Salt Cooled Reactor

Small and Micro Modular Reactors

Definitions: SMR / AMR / MMR

- Small Modular Reactor (SMR): <500 MWe max, usually between 50 and 200 MWe, generally based on GEN-3 technology (PWR, BWR, sometimes HTR)
- Advanced Modular Reactor (AMR):
 SMR type but of GEN-4 type system (Molten salt, Na, Pb, Gas, SuperCritical Water)
- Micro Modular Reactor (MMR) or Very Small Modular Reactor (vSMR) : Electro- and/or calogen nuclear reactor of a range power from 1 to 20 MWe

https://aris.iaea.org/Publications/SMR_Book_2020.pdf

- Scale effect => modularization plus offsite fabrication
- Design simplifications allowed by a reduced power => limitation of the Emergency Planning Zones
- Series effect => Reduction of construction time & costs
- Opening towards new specific markets => remote areas, non-electrical applications, mix between electricity/heat...

Nuclear Energy World Outlook

But nuclear energy production had begun increasing again, ...before COVID-19

Total primary energy

World TES from 1971 to 2018 by region (Mtoe)

Electricity

World electricity generation¹ from 1971 to 2018 by region (TWh)

- Global energy demand increases due to world population growth and improving standard of living
- Electricity demand increases even faster boosted by developments in smart electronics, A/C, electric cars..
- Total primary energy still produced mostly by fossil fuels
- Share of nuclear energy (~10%) no longer increasing in recent years
- Share of renewables increasing significantly

NUCLEAR ENERGY WORLD OUTLOOK

- Reducing CO2 emissions:
 - Energy saving & increase of efficiency but limited and counterbalanced by increase in developing countries
 - Reducing use of fossil fuels, in particular in electricity production and transportation
 - Carbon capture and storage, but expensive and profitable only if close to the emission site
 - Renewable energies but intermittent and expensive, rare earth element supply
 - Nuclear energy but fear of accident and question of waste

• no miracle solution but need for a combination of all possibilities to decrease share of fossil fuels!

1960	1970	1980	1990	2000	2010	2020
Global (Carbon Project	· Data: C	DIAC/GCP/U	NFCCC/BP/U	SGS	projuoruo

```
Source: Global Carbon Project, Dec. 2020
```

IEA NET-ZERO 2050 PROPOSED SCENARIO

- Combination of all solutions
- Share of electricity in total energy supply has to increase
- Nuclear energy has to be at least doubled

Figure 2.5 Total energy supply in the NZE

IEA. All rights reserved

Renewables and nuclear power displace most fossil fuel use in the NZE, and the share of fossil fuels falls from 80% in 2020 to just over 20% in 2050

IEA Net Zero by 2050 report iea.li/nzeroadmap

IEA NET-ZERO 2050 PROPOSED SCENARIO

Nuclear power capacity has to be at least doubled

- Advanced economies:
 - lifetime extensions for existing reactors
 - 4.5 GW / year new construction from 2021 to 2035
 - increasing emphasis on small modular reactors
- Emerging and developing economies
 - Two-thirds of new nuclear power capacity
 - mainly in the form of large scale reactors,
 - fleet of reactors quadruples to 2050

Solar and wind power race ahead, raising the share of renewables in total generation from 29% in 2020 to nearly 90% in 2050, complemented by nuclear, hydrogen and CCUS

IEA Net Zero by 2050 report iea.li/nzeroadmap

Figure 3.10 > Global electricity generation by source in the NZE

NUCLEAR ENERGY WORLD OUTLOOK

ASSOCIATION

New build and new countries

Agneta Rising, World Nuclear Association, March 2018

- 56 reactors under construction, of which 16 in China, 6 in Russia, 7 in India
- 152 reactors planned, of which 43 in China, 25 in Russia, 14 in India

NUCLEAR ENERGY TODAY IN THE WORLD

NUCLEAR ENERGY TODAY IN THE WORLD

NUCLEAR POWER CAPACITY TREND

Source: IAEA Power Reactor Information System (PRIS)

Number of Reactors

NUCLEAR ENERGY TODAY IN THE WORLD

Worldwide historical nuclear generating capacity and number of operating reactors (1965-2011)

Nuclear capacity GW (net)

Number of reactors

SHARE OF ELECTRICITY

Cost of electricity

3%

7%

10%

Source: IEA/NEA, Projected Costs of Generating Electricity, 2015

 \checkmark

 \checkmark

Energy subsidies

Source: ENERGY SUBSIDIES, International Renewable Energy Agency (IRENA), https://www.irena.org/publications/2020/Apr/Energy-Subsidies-2020

Figure S-1: Total energy sector subsidies by fuel/source and the climate and health costs, 2017

Figure S-2: Energy sector subsidies by source excluding climate and health costs in the REmap Case, 2017, 2030 and 2050

Energy subsidies are measures that keep prices for customers below market levels, or for suppliers above market levels, or reduce costs for customers and suppliers. Energy subsidies may be direct cash transfers to suppliers, customers, or related bodies, as well as indirect support mechanisms, such as tax exemptions and rebates, price controls, trade restrictions, and limits on market access.

- Although carbon dioxide emissions stagnated in 2016 for the third consecutive year due to protracted investment in energy efficiency, coal-to-gas switching and the cumulative impact of new low carbon generation, the sanctioning of new low-carbon generation has stalled.
- Even though the contribution of new wind and solar PV to meeting demand has grown by around three-quarters over the past five years, the expected generation from this growth in wind and solar capacity is almost entirely offset by the slowdown in nuclear and hydropower investment decisions, which declined by over half over the same time frame.
- Investment in new low-carbon generation needs to increase just to keep pace with growth in electricity demand growth, and there is considerable scope for more clean energy innovation spending by governments and, in particular, by the private sector.

Investments

Global investment in energy supply, 2000-2016

Source: IEA - World Energy Investment 2017

Types of radiation

- α—particles are helium nuclei (2 protons + 2 neutrons); they are produced in radioactive decay and as a result of some nuclear interactions.
- β particles are either electrons or positrons (antiparticle); they are produced in radioactive decay (e.g. of *tritium*).
- Both α and β radiation are charged and therefore easily stopped in a very short range by interactions with the electrons of atoms. In radiation protection, they are not of concern with regards to external exposure, but they are for contamination and internal exposure
- Neutrons are produced as result of some nuclear reactions such as fission & fusion.
- γ-rays are photons produced as a result of neutron interactions and also from radioactive decay.
- X-rays are also photons but produced by electrons in the atoms instead: they are not nuclear radiation but they are ionizing radiation, and therefore of equal concern.
- X-rays, γ-rays and neutrons have no charge and can penetrate deeply into matter (specially neutrons). They are of concern with regards to external exposure.

Radiation protection & shielding: health effects

- Ionising radiation can produce damage at biological level (→radiation protection discipline primary concern).
- Ionising radiation occurs naturally on Earth. It is one of the mechanisms responsible for genetic mutations and thus natural evolution of species. It also occurs as a result of some human activities.
- Background of natural radiation varies from tenths to tens of mSv/yr depending on altitude, geological terrain, housing type, diet, lifestyle...

Radiation protection & shielding: health effects

- Absorbed dose rate, D_{abs}, is the energy deposited by an ionising radiation R per unit time and per mass of a material M
- Dose is the time integral of a dose rate. Absorbed dose is measured in gray (1 Gy = 1 J/kg), and absorbed dose rate in Gy/h.
- Biological dose to humans is derived from the dose (Gy) with weights for tissues and type of radiation (Sievert 1 Sv = 1 J/kg), and biological dose rate in Sv/h.

Dose (Sv)	Deterministic effect
<0.1	No clinical symptoms observed
0.5-1	Nausea, decreased white blood cell count
1-4	Some bleeding, conjunctivitis, partial loss of hair, reduced sperm count
4-7	Within weeks: skin reddening, hemorrhages, widespread loss of hair, erythema, cataracts, permanent infertility, some intestinal symptoms (50% mortality)
7-12	Within days: severe gastrointestinal syndrome and hemorrhages (100% mortality)
>12	Within hours: very severe gastrointestinal syndrome and hemorrhages, radiation burns, skin ulceration
>100	Immediate disorientation, loss of consciousness

Risk	Annual occurrence
Radiation worker (20 mSv/yr)	1 / 1,000
Air crew worker	1 / 10,000
Construction worker	1 / 10,200
Road accidents	1 / 10,300
Public radiation exposure (1 mSv/yr)	1 / 20,000

EUSION

HRY

Safety Principles

The fundamental safety objective is to protect people and the environment from harmful effects of ionizing radiation

- **Principle 1: Responsibility for safety**. The prime responsibility for safety must rest with the person or organization responsible for facilities and activities that give rise to radiation risks
- **Principle 2: Role of government**. An effective legal and governmental framework for safety, including an independent regulatory body, must be established and sustained
- Principle 3: Leadership and management for safety. Effective leadership and management for safety must be established and sustained in organizations concerned with, and facilities and activities that give rise to, radiation risks
- Principle 4: Justification of facilities & activities. Facilities & activities giving rise to radiation risks must yield an overall benefit
- **Principle 5: Optimization of protection**. Protection must be optimized to provide the highest level of safety that can reasonably be achieved
- Principle 6: Limitation of risks to individuals. Measures for controlling radiation risks must ensure that no individual bears an unacceptable risk of harm
- **Principle 7: Protection of present and future generations.** People and the environment, present and future, must be protected against radiation risks.
- Principle 8: Prevention of accidents. All practical efforts must be made to prevent and mitigate nuclear or radiation accidents.
- **Principle 9: Emergency preparedness and response**. Arrangements must be made for emergency preparedness and response for nuclear or radiation incidents.
- Principle 10: Protective actions to reduce existing or unregulated radiation risks. Protective actions to reduce existing or unregulated radiation risks must be justified and optimized.

Safety at work: defence in depth

Control of abnormal operation should include some (negative) feedback mechanisms: e.g. if temperature (power) goes up, reaction cross section goes down Courtesy of IAEA

...? WHERE DO WE GO FROM HERE ? ...

CONCLUSIONS AND OUTLOOK

- Nuclear fission is a mature technology that offer several outstanding advantages over other energy sources but also drawbacks that still hinder its broad public acceptance
- Among the main issues, in particular in the eyes of public, are those of safety, waste disposal and proliferation
- To address such issues evolutionary (Gen III+) AND revolutionary design concepts (Gen IV, SMRs) are being pursued by the international community
- Once such issues and related technical challenges (e.g. waste incineration) will be solved nuclear fission shall enter a new NUCLEAR ERA for future generations fruition
- In view of mitigating CO2 emission and reduce our overall energy production environmental footprint it is ludicrous to restrict our options to any specific source (they all have issues!). <u>We need to aim for a optimal energy mix by</u> <u>deploying at best all (no fossil fuels) resources !</u>

Other neutron absorption processes yielding energy

How long will U resources last?

As an example, fuel fabrication for a big nuclear production requires about 160,000 Kg natural U per v	milli 1	uranium	
production, requires about rootooo kg natararo per y		Australia	1.14
\rightarrow In the current scheme with about 450 reacto	Kazakhstan	0.82	
"conventional" (chean) reserves would last for anothe	er 80 years (maybe less if average	Canada	0.44
reactor power will increase)	er oo years (maybe less in average	USA	0.34
reactor power win increase,		South Africa	0.34
		Namibia	0.28
\rightarrow Should nuclear power increase as in some of the	above scenarios, we should think	Brazil	0.28
about (more expensive) resources like phosphates (c	loable) or U from sea water (still	Russian Federation	0.17
under study)		Uzbekistan	0.12
→ Switching to fast reactors/Thorium cycle would 100/few 1000 years	l increase availability to a few	World total (conventional reserves in the ground)	4.7
		Phosphate deposits	22
		Seawater	4 500
Lifet	ime of uranium resources (in years) for current r tron systems (based on 2006 uranium reserves a	eactor technology and future nd nuclear electricity generat	e fast tion rate)

	Identified resources	Total conventional resources	Total conventional and unconventional resources
Present reactor technology	100	300	700
Fast neutron reactor systems	> 3 000	> 9 000	> 21 000

Source: OECD/NEA, Nuclear Energy Outlook, 2008

Uranium production and reactor requirements for major producing and consuming countries, as of end 2018, tU

WORLD NUCLEAR ASSOCIATION

Nuclear Reactors Generations

How much fuel ?

Suppose you've got a reactor with 1 GW thermal power (1 GW_{th} \rightarrow ~ 300 MW_e) = 10⁹ Joule/sec Assume each fission releases order of 200 MeV energy = $3.2x10^{-11}$ Joule

 \rightarrow In the reactor the fission rate is about 3x10¹⁹ fissions/sec

→ which means that e.g. 3x10¹⁹ (nuclei of ²³⁵U)/sec disappear (actually a bit more because of

radiative capture)

Fuel	Istantaneous consumption (per second)	Yearly consumption (@90 % load factor*)		
Uranium	0.012 g	340 Kg		
Natural Gas	27 m ³	766 million m ³		
Crude oil (average)	22.5 Kg	0.6 million tons		
Lignite (average)	67 Kg	1.9 million tons		
Coal (average)	34 Kg	1 million tons		

For a thermal reactor (see later) loaded with mixed UO₂ fuel (density about 11 gr/cm³) comprising 4 % ²³⁵U and 96 % ²³⁸U, this corresponds to 8500 Kg of fuel \rightarrow 0.8 m³

In practice, there has to be much more as the chain reaction needs the presence of fissile nuclei at all times → the reactor has to be critical at all times However, ²³⁵U consumption is partly compensated by Plutonium (²³⁹Pu) burn up

(*) load factor=percentage of time when the reactor is actually producing electricity

NUCLEAR WASTE MANAGEMENT

Indicative volumes (m³) of radioactive waste produced annually by a typical 1 000 MWe nuclear plant, for once-through cycle and with reprocessing of spent fuel

Waste type	Once-through fuel cycle	Recycling fuel cycle
LLW/ILW	50-100	70-190
HLW	0	15-35
Spent Fuel	45-55	0

Source: OECD/NEA, Nuclear Energy Today, 2012

Most of the reactors operative in the world today are thermal spectrum reactors

> 265 PWRs, 92 BWRs, 48 CANDU, 18 AGRs, 15 LGR and only one LMFBR

- Currently dominant open fuel cycle, in which uranium fuel is irradiated, discharged and replaced with new uranium fuel, has resulted in the gradual accumulation of large quantities of highly radioactive or fertile materials in the form of Depleted Uranium, Plutonium, Minor Actinides (MA) and Long-Lived Fission Products (LLFP)
- ~2500 tons of spent fuel are produced annually in the EU containing ~25 tons of Pu, ~3.5 tons of MAs (Np, Am, and Cm) and ~3 tons of LLFPs (Tc, Cs and I)
- In EU spent fuel is reprocessed and some of the separated products have already been utilized in the form of MOX (Mixed Pu/U Oxide) fuels, but not yet in sufficient quantities to significantly slow down the steady accumulation of these materials in storage. Also Russia and Japan perform reprocessing

Example of ADS performance

- ✓ Main design missions of EFIT are effective transmutation rate of the Minor Actinides (MA) and effective electric energy generation
 - □ Fuelled with only MA (Uranium free fuel)
 - □CER-CER (Pu,Am,Cm)O2-x MgO
 - CER-MET (Pu,Am,Cm)O2-x 92Mo
- ✓ Minimize the burn-up reactivity swing without burning and breeding Pu

Emissions compared

The environmental impact of various energy sources is measured by looking at the release of pollutants and greenhouse gases (about 27 % of CO₂ emissions comes from electricity production).

Emissions from a 1000 MWe power plant [t/year]

(Source: Energy in Italy: problems and perspectives (1990 - 2020) – Italian Physical Society 2008)

		CO2	SO ₂	MO _x	Particulate	Only fu	uel burnup		
Nuclear		0	0	0	0 <	,			
Coal		7.500.000	60.000	22.000	1.300		Technology	Capacity/configuration/fuel Est	imate (gCO ₂ e/
Oil		6.200.000	43.000	10.000	1.600			kW	/h)
Gas		4.300.000	35	12.000	100		Wind	2.5 MW offshore	9
Photovoltaic		0	0	0	0		Hydroelectric	3.1 MW, reservoir	10
Wind	_	0	0	0	0		Wind	1.5 MW, onshore	10
-	_	· · ·	Ŭ.		<u> </u>		Biogas	Anaerobic digestion	11
If one con	siders th	e whole plant	lifetime (fr	om fuel m	ining/extra	ction to	Hydroelectric	300 kW, run-of-river	13
			incunic (ii	omracim	ining/ cxtru		Solar thermal	80 MW, parabolic trough	13
decommis	sioning)						Biomass	Forest wood Co-combustion with hard of	coal 14
					Biomass	Forest wood steam turbine	22		
						Biomass	Short rotation forestry Co-combustion v hard coal	vith 23	
				Frontend, 25.09 g/kWh			Biomass	FOREST WOOD reciprocating engine	27
							Biomass	Waste wood steam turbine	31
				Construction, 8.20 g/kWh			Solar PV	Polycrystalline silicone	32
	Nuc	loar nlan	+				Biomass	Short rotation forestry steam turbine	35
			•				Geothermal	80 MW, hot dry rock	38
		carbon		Operation, 11.58 g/kWh			Biomass	Short rotation forestry reciprocating eng	gine 41
					, 0,		Nuclear	Various reactor types	66
footprint						Natural gas Various combined cycle turbines		443	
		Backer	nd, 9.20 g/Kwl	1	Fuel cell Hydrogen from gas reforming		664		
					Diesel	Various generator and turbine types	778		
			II Decom	missioning. 1	missioning, 12,01 g/KWh		Various generator and turbine types	778	
						Coal	Various generator types with scrubbing	960	
			Total, 66	i.08 gCO _z e/kV	Vh	Coal	Various generator types without scrubb	ing 1050	

Source: Benjamin K. Sovacool, Energy Policy 36 (2008) 2940–2953

Nuclear energy in the worldwide perspective

World primary energy demand and CO₂ emissions by scenario

•New Policies \rightarrow continuation of existing policies and measures, cautious implementation of announced policy proposals

• Current Policies → only consider policies enacted as of mid-2015, can be used as baseline

•450 \rightarrow CO₂ limited to 450 ppm \rightarrow 50% chance of limiting long-term average global temperatures increase to < 2 °C

Worldwide energy trends: projection on energy supply

Total primary energy supply by fuel type (in million tonnes oil equivalent) (Mtoe)

Source: IEA, Key World Energy Statistics, 2016

In these graphs, peat and oil shale are aggregated with coal.
 Includes international aviation and marine bunkers.

Includes international aviation and marine burkers.
 Includes biofuels and waste, geothermal, solar, wind, tide, etc.

A. Based on a plausible post-2015 climate-policy framework to stabilise

the long-term concentration of global greenhouse gases at 450 ppm CO2equivalent.

NUCLEAR REACTORS IN EUROPE

As of November 2016 there was a total of 186 nuclear power plant units with an installed electric net capacity of 164 GWe in operation in Europe (five thereof in the Asian part of the Russian Federation) and 15 units with an electric net capacity 13.7 GWe were under construction in six countries

Country		ir	n operation	under construction		
		number	net capacity MWe	number	net capacity MWe	
	Belarus	-	-	2	2.218	
	Belgium	7	5.913	-	-	
	Bulgaria	2	1.926	-	-	
	Czech Repuplic	6	3.930	-	-	
	Finland	4	2.752	1	1.600	
	France	58	63.130	1	1.630	
	Germany	8	10.799	-	-	
	Hungary	4	1.889	-	-	
	Netherlands	1	482	-	-	
	Romania	2	1.300	-	-	
	Russia	36	26.557	7	5.468	
	Slovakia	4	1.814	2	880	
	Slovenia	1	688	-	-	
	Spain	7	7.121	-	-	
	Sweden	10	9.651	-	-	
	Switzerland	5	3.333	-	-	
	Ukraine	15	13.107	2	1.900	
	United Kingdom	15	8.918	-	-	
	Total	186	163.685	15	13.696	

